A Homodienolate-Enone Addition

Robert B. Bates,*[a] Michael D. Carducci,[a] Vinayak V. Kane,*[b] Sanjoy Lahiri,[c] S. Prathap,[c] Vishwakarma K. Singh,[c] and Chad C. Stessman^[a]

Dedicated to Professor Alex Nickon on his 71st birthday and Professor Andre Dreiding on his 80th birthday

Keywords: Cycloadditions / Michael additions / Enones / Ketones / Synthetic methods

On treatment with sodium hydride, a mixture of ketone 1 and enone 4 gives a 48% yield of adduct 2, which contains two new carbon–carbon bonds. The reaction very likely involves homodienolate 3, which may either undergo a Michael addi-

tion or a cycloaddition to enone 4 to give intermediate adduct 6 or 7, respectively. Adduct 6 may then undergo homo-Michael addition to give adduct 7. Cyclopropane ring-opening of adduct 7 and protonation give the observed adduct 2.

Introduction

During our polycyclopentanoid synthesis studies,^[1] an attempted alkylation of ketone 1 with propargyl bromide/NaH gave a crystalline product whose characterization led to the unexpected results described below.

Results and Discussion

The mass spectrum of the substance indicated it to be two protons short of being a dimer of ketone 1, suggesting its formation from two molecules of ketone 1 and none of propargyl bromide. The heptacyclic structure 2 was deduced from an HMQC/HMBC/NOESY NMR study (which permitted complete proton and carbon chemical-shift assignments) and verified by an X-ray diffraction study (Figure 1).^[2] The most likely mechanisms (Scheme 1) for obtaining 2 involve reaction of homodienolate 3 with enone 4. When the crude ketone 1 used for the alkylation was examined, it was found to contain enone 4, resulting from incomplete zinc reduction of ketone 5 in the preparation of ketone 1.

The previously unknown enone 4 was then synthesized and purified. When an equimolar mixture of ketones 1 and 4 was treated with NaH, diketone 2 was formed in 48% yield, increasing the likelihood that Scheme 1 is correct. Di-

ketone 2 was not obtained unless both ketones 1 and 4 were present.

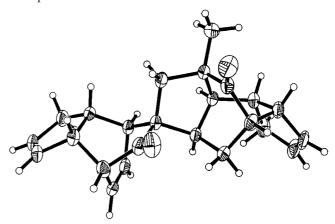
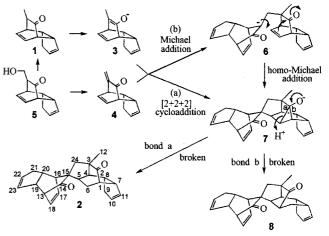



Figure 1. The X-ray structure of 2, with 50% probability ellipsoids for non-hydrogen atoms

Scheme 1. Possible mechanisms for the formation of 2

Two possible mechanisms for the reaction of homodienolate 3 with enone 4 are shown in Scheme 1: (a) a

[c] Department of Chemistry, Indian Institute of Technology, Powai, Bombay 400076, India

[[]a] University of Arizona, Department of Chemistry, Tucson, AZ 85721, U.S.A. Fax: (internat.) +1-520/621-8407

E-mail: batesr@u.arizona.edu

Department of Chemistry, Ohio State University,
Columbus, OH 43210, U.S.A.

Present address: Department of Chemistry, University of
Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.

 $[\pi 2_s + \pi 2_s + \pi 2_s]$ cycloaddition to give cyclopropanolate anion 7 directly. [2+2+2] Cycloadditions of alkenes to bicyclo-[2.2.1]hepta-2,5-dienes are well-known, [3] but this would apparently be the first such reaction involving a homodienolate; (b) Michael addition of enolate 3 to α,β -unsaturated ketone 4 to give 6, followed by intramolecular homo-Michael addition to give 7. To the best of our knowledge, no homo-Michael addition has been reported. Electrophilic additions to bicyclo[2.2.1]hept-5-en-2-ones and bicyclo-[2.2.2]oct-5-en-2-ones have been studied, [4] but this would be a nucleophilic addition. Homoenolates of bicyclo[2.2.1]heptan-2-ones and bicyclo[2.2.2]octan-2-ones[5] are well known, and apparently form more readily than most homoenolates, [6] so it would not be surprising if the first homo-Michael addition found should be to a bicyclo[2.2.2]oct-5en-2-one. We presently have no way of distinguishing whether mechanism (a) or (b) is followed, but either pathway to 2 has novelty.

We have supported the reasonableness of the last step in Scheme 1 by calculating diketone 2 (heat of formation using PM-3, -28.5 kcal/mol) to be much more stable than isomer 8 (heat of formation using PM-3, -16.4 kcal/mol), which would arise by an alternative cyclopropane ring-opening of 7.

This synthesis of adduct 2 was done with racemic starting materials. In forming this adduct, one enantiomer of dienolate 3 selects the opposite enantiomer of enone 4. No other stereoisomers of adduct 2 were detected, though lesser amounts of its stereoisomers may have been formed.

Though its mechanism is not clear, the ease with which this homodienolate-enone cyclization occurs makes this carbon—carbon bond-forming reaction attractive for additional applications.

Experimental Section

General Remarks: NMR spectra were measured in CDCl₃/TMS at 300 and 500 MHz (¹H) and 125.7 MHz (¹³C) with Bruker spectrometers. X-ray data were collected with a Bruker diffractometer with a SMART 1000 CCD detector.

Enone 4: To ketol $5^{[1]}$ (230 mg, 1.21 mmol) in THF/H₂O (4:1, 10 mL) were added KOH pellets (600 mg) and the mixture was stirred at 30 °C for 1 h. THF was removed in vacuo. The residue was diluted with water (15 mL) and extracted with EtOAc (3 × 25 mL). Drying (Na₂SO₄), solvent evaporation, and chromatography on silica gel gave enone **4** as a liquid (200 mg, 96%), EIMS: m/z = 172 [M⁺]. – UV: $\lambda = 340$ nm. – IR (neat): $\tilde{\nu} = 1710$, 1360

cm⁻¹. - ¹H NMR (CDCl₃, 300 MHz): δ = 2.04 (br d, J = 15 Hz, 1 H), 2.56 (br dd, J = 15, 9 Hz, 1 H), 2.74 (m, 1 H), 3.21 (br d, J = 8 Hz, 1 H), 3.28 (br d, J = 6 Hz, 1 H), 3.55 (m, 1 H), 5.19 (s, 1 H), 5.48 (m, 1 H), 5.66 (m, 1 H), 5.80 (d, J = 2 Hz, 1 H), 6.11 (br t, J = 8 Hz, 1 H), 6.32 (br t, J = 8 Hz, 1 H).

Diketone 2: Ketone 1 (200 mg, 1.15 mmol) in THF (10 mL) was added to a suspension of NaH (140 mg, 5.83 mmol) in THF (5 mL). After refluxing for 30 min, enone 4 (200 mg, 1.16 mmol) in THF (5 mL) was added. After refluxing for 4 h, the reaction was quenched with cold water (10 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3 \times 20 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. Silica gel chromatography (EtOAc/petroleum ether 8:92) gave 190 mg (48%) of diketone 2, m.p. 206 °C; EIMS: $m/z = 346 \, [M^+]$, 281 $[M - C_5H_5]$, 280 [M - C_5H_6], 228, 162, 118, 117. – ¹H NMR (CDCl₃, 500 MHz): δ = 1.21 (s, 3 H, H-12), 1.33 (dd, J = 14.4, 4.8 Hz, 1 H, H-6_{exo}), 1.56 (dd, J = 14.4, 9.5 Hz, 1 H, H-6_{endo}), 1.58 (d, J = 13.6 Hz, 1 H, $H-24_{exo}$), 1.92 (br d, J = 17.0 Hz, 1 H, $H-21_{endo}$), 1.98 (d, J =13.6 Hz, 1 H, H-24_{endo}), 2.15 (m, 1 H, H-1), 2.19 (m, 1 H, H-4), 2.23 (dd, J = 9.5, 4.8 Hz, 1 H, H-5), 2.30 (br d, J = 14.1 Hz, 1 H, H-9_{exo}), 2.54 (m, 1 H, H-21_{exo}), 2.61 (m, 1 H, H-9_{endo}), 2.66 (m, 1 H, H-8), 2.73 (m, 1 H, H-20), 2.77 (m, 1 H, H-16), 2.98 (m, 1 H, H-7), 3.07 (m, 1 H, H-19), 3.14 (m, 1 H, H-13), 5.37 (m, 1 H, H-11), 5.39 (m, 1 H, H-23), 5.64 (m, 1 H, H-22), 5.87 (m, 1 H, H-10), 5.99 (t, J = 7.2 Hz, 1 H, H-18), 6.43 (t, J = 7.2 Hz, 1 H, H-17). $- {}^{13}$ C NMR (CDCl₃, 125.7 MHz): $\delta = 17.9$ (C-6), 19.5 (C-12), 30.9 (C-8), 34.6 (C-20), 37.5 (C-9), 39.1 (C-21), 44.4 (C-1), 46.5 (C-5), 46.6 (C-24), 47.3 (C-7), 49.4 (C-16), 49.4 (C-4), 52.3 (C-19), 54.2 (C-13), 55.2 (C-3), 57.0 (C-15), 126.7 (C-18), 130.0 (C-11), 130.2 (C-23), 132.8 (C-22), 133.1 (C-10), 134.6 (C-17), 214.9 (C-14), 219.9 (C-2).

Acknowledgments

We thank RSIC, IIT Bombay and TIFR Bombay for spectral facilities, CSIR New Delhi for a senior fellowship to S. P., and DST New Delhi for financial support.

Received June 9, 2000 [O00299]

^[1] V. Singh, M. Porinchu, Tetrahedron 1996, 52, 7087-7126.

Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-118968. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

^[3] R. B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry, Verlag Chemie, 1970, p. 106.

 ^[4] P.-A. Carrupt, P. Vogel, *Helv. Chim. Acta* 1989, 72, 1008-1028.
 [5] A. Nickon, J. L. Lambert, J. E. Oliver, D. F. Covey, J. Morgan,

A. Nickon, J. L. Lambert, J. E. Oliver, D. F. Covey, J. Morgan J. Am. Chem. Soc. 1976, 98, 2593—2599.

^[6] N. H. Werstiuk, Tetrahedron 1983, 39, 205-268.